Autoimmune Haemolytic Anaemia post Bone Marrow Transplant

A Case Study

Kelly Sliwinski ACT Pathology

Patient History

- Master X
 - 22 months old
- Presented to the Paediatric Dept March 2015
 - Lethargy
 - Upper respiratory tract infection 1 week
- Clinical History
 - Chronic Granulomatous Disease (CGD)
 - Post BMT
 - Prednisolone commenced 5 days prior due to falling Hb

Chronic Granulomatous Disease

- CGD is a primary immune disorder
 - Results in defective production of NADPH oxidase
 - Critical to the oxidative destruction of phagocytosed pathogens
 - Leading to recurrent infections forming granulomas in the organs
- Treatment consists of antibiotic prophylaxis and interferon therapy
- The only curative treatment is allogeneic bone marrow transplant

Bone Marrow Transplant

- Bone Marrow Transplant November 2014
 - Sydney Children's Hospital
 - Unrelated matched donor 10/10
 - Discharged under the care of SCH

AIHA post BMT

- AIHA is a rare complication of BMT
 - Reported incidence of 3-4.4% in paediatrics
- Most patients require medical intervention
 - IVIg, steroid treatment, transfusion
- Median time of onset is 273 days post first BMT
 - 157 days post second BMT
- There is a significant association with AIHA in recipients of mismatched related, matched unrelated and mismatched unrelated donors
 - Compared to matched related donors

AIHA post BMT

- There is a higher incidence in patients undergoing BMT due to non-malignant disorders
 - Possibly due to the patient having a relatively competent immune system prior to BMT
 - No significant association between the incidence of AIHA and HvGD
- Overall survival did not differ significantly among recipients of single BMT with and without AIHA

- Haemolytic Screen May 2015
 - Hb 55 (ref. 102-132g/L)
 - Retics 14.25%
 - Haptoglobin <0.1
 - Bilirubin 24
 - LDH 481

- (ref. 0.5-2.0%) (ref. 0.3-2.0g/L) (ref. 2-20umol/L)
- 101 (rof 164 20611/1)
 - (ref. 164-286U/L)

- Serology May 2015
 - Blood Group O RhD positive
 - DAT positive grade 4
 - Specificity IgG and C3b
 - Insufficient sample for elution
 - Antibody Screen positive
 - Pan-agglutinating
 - Insufficient sample for full panel investigation

Abtect 3 Cell Screen

	D	С	E	C	e	K	Fya	Fyb	Jka	Jkb	Μ	Ν	S	S	IAT
$\mathbf{R}_1\mathbf{R}_1$	+	+	0	0	+	+	0	+	0	+	0	+	0	+	3
$\mathbf{R}_2\mathbf{R}_2$	+	0	+	+	0	0	+	0	+	0	+	+	+	+	4
rr	0	0	0	0	+	+	+	0	0	+	+	0	+	+	3

Abbreviated Phenocell B panel

	D	C	E	С	e	K	Fya	Fyb	Jka	Jkb	Μ	Ν	S	S	IAT
$\mathbf{R}_{1}\mathbf{R}_{1}$	+	+	0	0	+	+	+	+	0	+	+	0	+	+	3
$\mathbf{R}_1\mathbf{R}_1$	+	+	0	0	+	0	0	+	+	+	+	0	+	0	3
$\mathbf{R}_2\mathbf{R}_2$	+	0	+	+	0	0	+	0	+	0	+	+	+	+	4
$\mathbf{R}_2\mathbf{R}_2$	+	0	+	+	0	0	0	+	0	+	0	+	0	0	4
Auto															3

- A full phenotype post BMT
 - R_1r K- Jk(a-b+) M+N- S+s-
 - Weak reactions against K, N & s
 - Due to interference from auto-antibody
 - Interpreted as negative
- Strong reacting pan-agglutinating auto-antibody with an underlying allo Anti-E

- A rr, CMV-, irradiated and phenotype matched unit was IAT crossmatched and released as "least incompatible"
 - Grade 3 reaction against the unit
 - Grade 4 reaction against the auto control
- IVIg 1g/kg was also given

- The transfusion was well tolerated
 - No adverse reactions noted
- Discharge diagnosis
 - AIHA post BMT
 - Steroid therapy to continue

• Haemolytic Screen - March 2016

- Hb 43
- Retics >30.0%
- Haptoglobin <0.1
- Bilirubin 46
- LDH 983

- (ref. 107-136g/L)
- (ref. 0.5-2.0%)
 - (ref. 0.3-2.0g/L)
- (ref. 2-20umol/L)
 - (ref. 164-286U/L)

- Serology unchanged
 - Strong reacting pan-agglutinating auto-antibody with an underlying allo anti-E
- R₁r, CMV-, irradiated and phenotype matched unit
 with the exception of Jka was IAT crossmatched
 - Grade 4 reaction against the **unit**
 - Grade **3** reaction against the **auto control**
- Due to clinical necessity the unit was released with Haematologist approval

- The transfusion was well tolerated
 - No adverse reactions noted
- Discharged
 - Steroid therapy re-commenced

- X presented again with declining Hb August 2016
- Finally received adequate samples for full investigations
 - Allo-adsorption
 - Genotyping

• Allo-adsorption Panel – 3rd pass

		D	С	E	С	e	K	Fya	Fyb	Jka	Jkb	Μ	Ν	S	S	IAT
R ₁	R ₁	+	+	0	0	+	0	0	+	0	+	0	+	0	+	+/-
R ₁	R ₁	+	+	0	0	+	+	+	0	0	+	+	0	+	0	+/-
R ₁	R ₁	+	+	0	0	+	0	+	0	+	0	+	0	+	0	+/-
\mathbf{R}_{2}	R ₂	+	0	+	+	0	0	0	+	+	0	+	0	+	0	3
R ₂	R ₂	+	0	+	+	0	0	+	0	0	+	+	0	0	+	3
r'	r	0	+	0	+	+	0	+	0	+	+	+	0	0	+	+/-
r"	r	0	0	+	+	+	0	+	0	+	0	0	+	+	+	2
rı	r	0	0	0	+	+	+	0	+	0	+	+	+	0	+	0
ri	r	0	0	0	+	+	0	+	+	0	+	0	+	+	+	0
ri	r	0	0	0	+	+	0	+	0	+	0	0	+	0	+	0
ri	r	0	0	0	+	+	0	0	+	0	+	+	0	+	+	0

- Allo-adsorption showed an allo Anti-E
 - Also suggestive of an auto Anti-C
 - This may be the reason why the last unit transfused (R₁r) gave stronger reactions than the auto control
- A rr, CMV-, irradiated and phenotype matched unit was IAT crossmatched
- The transfusion was tolerated well
 - No evidence of reaction
- Discharged
 - Steroid therapy to continue

Genotyping Results

- Beadchip predicated phenotype
 - c+C+e+, K-k+ Fy(a+b+) Jk(b+) M+N-S+s-
- Serology phenotype
 - RhE-, Jk(a-)
- Comments
 - As a recipient of a marrow transplant the genotype for this latest sample is showing a mixed chimerism leading to allelic imbalance, for the RHE and JKA

Questions

- The introduction of molecular testing often provides valuable information when dealing with patients with complex transfusion requirements
 - But can also give rise to many questions...

- Is the detected chimerism an early sign of BMT rejection or did X just not fully engraft?
- Does chimerism / incomplete engraftment pre-dispose recipients to post BMT AIHA?

Song *et al.* "Chronic granulomatous disease: a review of the infection and inflammatory complications" Clinical and Molecular Allergy 2011, 9:10

Ahmed *et al.* "The incidence of autoimmune haemolytic anaemia in paediatric haematopoietic stem cell recipients post first and second haematopoietic stem cell transplants" Pediatr Transplant 2015, 19(4): 391-398